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Abstract

We outline the theory of magnetic core memory, and describe the
design and fabrication of a core memory Arduino shield.

1 Introduction

1.1 What is magnetic core memory?

Magnetic core memory was the most widely used form of digital com- Core memory is an old
memory technology.puter memory from its birth in the early 1950s until the era of in-

tegrated-circuit memory began in the early 1970s. Aside from being
extremely reliable, magnetic core memory is an appealing technology
because it is based on a very simple idea.

A magnetic core is a ring of ferrite material. It can be permanently A core, a ring of magnetic
material, stores one bit by
the direction of its
magnetisation.

magnetised either clockwise or anti-clockwise about its axis just as
a vertical bar magnet can be magnetised up or down. We can then
turn a magnetic core into a bit of digital memory by letting these two
magnetisation states correspond to 0 and 1.

The core needs no power to retain its data. In other words, core It provides non-volatile
storage.memory is a form of non-volatile storage like modern hard disk drives,

although in its day it fulfilled the ‘high-speed’ role of modern RAM.
With many such cores, large memory modules were made, such as

this example from a CDC machine of the mid-1960s. The right-hand
image shows a close-up of the cores themselves.

50 mm 2 mm
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As the technology developed [1], the cores shrank from c.2 mm di-Cores were c.1 mm across,
and ran at c.1 MHz. Core
stores had up to 500,000

cores.

ameter in the early 1950s to c.0·4 mm by the early 1970s. Access speeds
rose at the same time, from about 200 kHz to over 1 MHz, and core
memory modules were manufactured with as many as over half a mil-
lion cores. Furthermore, as recently as 2004, a magnetic core memory
system was found still in service in a telephony control system.

Magnetic core memory continues to capture the imaginations ofIt is still an interesting
technology even today. modern enthusiasts [2, 3], and it is also the origin of the term core

dump, to mean an on-disk image of the main memory of a process.

1.2 What is an Arduino?

The Arduino, whose Duemilanove version is shown above [5], is anThe Arduino is a popular,
easy-to-use, open design

microprocessor board with
IO capabilities.

open-source physical computing device. It has removed many of the
hurdles for people wishing to explore embedded microprocessing. An
Arduino is a small single-board computer based on an Atmel AVR
microprocessor, with supporting components to handle USB commu-
nications and provide easy access to input/output pins. The developer
programs the on-board microprocessor using an IDE running on a PC.
It has proved very popular, with six-figure sales, and has been used
in projects as diverse as autopilots for radio-controlled aeroplanes, and
CNC sewing machines.

Several expansion modules exist, allowing the Arduino to performAdd-on shields exist,
providing specialist

interfacing or control
functions.

a greater variety of tasks. These secondary modules, or shields, are
circuit boards that plug into the Arduino’s pin headers, and supply
additional hardware to, for example, drive motors or servos, interface
with wireless communication modules, or communicate over Ethernet.

1.3 A core-store shield

We had developed an interest in the principles and practice of coreWe set ourselves the
challenge of creating a core

memory Arduino shield.
memory, and the creation of a modern core memory module struck us
as an appealing challenge. Eventually a pleasing idea suggested itself:
we decided to build a magnetic core memory Arduino shield.

Our project was made possible thanks to the existence of a sup-New-old-stock cores;
modern components. ply of surplus ferrite cores manufactured in the 1980s for the magnetic

core memory systems of the time. We decided that we would use these
old cores but permit ourselves to use modern components (transistors,
integrated-circuit logic gates, etc.). This made our work enormously
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easier than that of the original core memory inventors and manufac-
turers. Also, we knew that our end goal was possible.

We succeeded in building an extremely reliable 32-bit core memory It worked.

shield for the Arduino. It can be used as storage for the Arduino, or
alternatively, any modern computing device with a USB port can now
read and write to magnetic core memory.

2 Principles of core memory

2.1 Magnetic hysteresis

A ferrimagnetic substance has two distinct permanently magnetised
states. In our case, these are clockwise and anti-clockwise round the
cores. The key to their use as computer memory is their behaviour
when an external magnetic field is applied — they exhibit hysteresis.

A weak external field has no effect

If we apply a weak external magnetic field around a core, and then
remove it, there is no lasting effect on the core’s magnetisation:

Start off with a core magne-
tised in the anti-clockwise di-
rection:

Apply a weak clockwise exter-
nal field. This reduces the
strength of the anti-clockwise
magnetism in the core:

But when the external field is
removed, the magnetism in the
core ‘springs back’ to its orig-
inal state:

A weak anti-clockwise field similarly produces no lasting change.

Strong external fields cause the magnetisation to switch

However, if we apply a sufficiently strong magnetic field in the opposite
direction, the core will switch from one magnetic state to the other:

Start off with a core magne-
tised in the anti-clockwise di-
rection:

Apply a strong clockwise ex-
ternal field. This switches the
core’s magnetism, and the core
now has clockwise magnetism:

When this external field is
removed, the magnetism in
the core reduces slightly in
strength, but remains clock-
wise:

A strong field in the same direction as the core’s existing magnetisation
has no lasting effect — the core is saturated and can be magnetised no
further in that direction.
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2.2 The magnetic field of a current-carrying wire

The next essential physical fact is that a DC current in a wire createsCurrent in a wire creates a
magnetic field. a magnetic field circulating about the wire, whose strength is propor-

tional to the size of the current. If we reverse the direction of the
current, the magnetic field circulates in the opposite direction:

Small current down;
weak clockwise field

Large current down;
strong clockwise field

Small current up; weak
anti-c/w field

Large current up;
strong anti-c/w field

2.3 Writing to a one-bit core memory system

We now know enough to write one bit of core memory. Having threadedWe can write a bit by
driving appropriate

currents.
a wire through a core, we can cause the core to become magnetised in
the clockwise direction by passing a strong enough current in one direc-
tion through the wire, and we can cause the core to become magnetised
in the anti-clockwise direction by passing a strong enough current in
the opposite direction. These two operations correspond to writing 0
and 1 to the core. The magnetisation of the core, and so the bit stored,
remains even after the current stops flowing.

The core is magnetised anti-
clockwise, and therefore holds
the bit 1. No current flows
through the wire.

A large current is supplied,
generating a strong magnetic
field. This switches the core’s
magnetisation to clockwise.

When the current is turned
off, the core remains magne-
tised clockwise, therefore now
holding 0.

2.4 Reading from a one-bit core memory system

Core memory would probably have been a lot less popular had it beenBut: how do we read the
state of the core? a write-only technology. To see how to read from the core, we need a

further piece of physics: a changing magnetic field induces a voltage.
Consider a core which is magnetised anti-clockwise. If we applyWhen a core switches, it

induces a voltage. current which tries to increase this anti-clockwise magnetisation, it
does not in fact change the magnetic field in the core much — it is
already saturated. If, however, we apply enough current in the opposite
direction, the core switches to be magnetised clockwise, as shown above.
This process takes a small amount of time, around 1µs for typical cores.
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During that time, the magnetic field is undergoing a large change, and
so induces a noticeable voltage.

The setup for reading the state of a core then is to have two wires A second wire senses the
induced voltage.passing through the core. We use one wire, the drive line, for driving

current back and forth and so to set the state of the core, and we have
circuitry connected to the second wire, the sense line, to measure the
induced voltages.

We start the process of reading the core by writing a 0 to it using To read: write a 0; check if
the core switched. If it
did, it was a 1.

the drive line. If we observe no significant induced voltage on the sense
line then we learn the core was already in state 0. If, however, we
observe a large induced voltage on the sense line then we learn that
the core contained a 1 (and we then write 1 back to the core). The
memory is said to operate with a destructive read.

At this point it may help to make this more concrete by exhibiting We measured the sense
signals from our cores.some real data. Below we present the results of one of our experiments

in which we measured the induced voltage on the sense line when writ-
ing 0 to a core which contained 1, and when writing 0 to a core which
already contained 0.

If a core switches from one magnetisation
direction to the other, the changing mag-
netic field induces a voltage that peaks at
c.35 mV, staying above 20 mV for c.600 ns:

However, if the applied field is in the same
direction as the core’s existing magnetisa-
tion, no switching takes places, and we ob-
serve a negligible voltage:

20 mV

40 mV

2µs pulse 2µs pulse

We also see voltage ‘spikes’ caused by the drive line currents switching
on and off. These transformer-action spikes are significant in magni-
tude but are short and temporally separated from the switching signal.
The pulse shown is in fact the base drive of transistors, and the turn-on
and turn-off delays are visible.

We could now build a one-bit read-write core memory system.

2.5 Arrays of cores and half-select currents

However, we want to have more than one bit of memory without need- Imposing only half the
field leaves the core alone.ing one drive line per core. We make use of a feature of the hystere-

sis behaviour of the core. We previously talked in terms of ‘weak’ or
‘strong’ external magnetic fields. Slightly more quantitatively: the core
is not switched by a field which is half as strong as one which is just
strong enough to switch the core. The field is proportional to the cur-
rent in the drive line, so if we pass half the current required to just
switch a core through the drive line, the core will not switch state.

Now suppose we have nm cores and we arrange them in an n×m A 2-D array gives efficient
control of every core.rectangular array such that each core has one of n horizontal and one

of m vertical drive lines passing through it. With this setup we can

5



selectively set the (i, j)th core and no other by simultaneously driving
the ith vertical drive line and jth horizontal drive line in the appropri-
ate directions, each with half the current required for switching. For
example, in a 4×4 array, with the cores viewed edge-on, we switch the
core shown:

One core receives a full field and switches.

Nine cores like this are completely unaffected.

Six cores like this receive a half-field and are unaffected.

We only need O(
√
N) drive lines for an array of N cores.

In total, each core will have three wires threaded through it: two
perpendicular drive lines, and a sense line. A single sense line can be
threaded through all cores in an array, a point we return to below.

2.6 Exploiting anti-coincidence

The picture we should now have in mind of a core memory module isOne more trick doubles
the number of cores we

can address.
a rectangular array of cores, with one vertical and one horizontal drive
line passing through each core. There is a further drive-line economy,
which cuts in half the number of drive lines in one dimension.

Consider a core with its two drive lines. There are then four combi-Two states out of four do
nothing. nations of current direction. Two combinations produce a reinforcing

field round the core, but in the other two, the fields cancel round the
core:

Reinforce to write 0: Reinforce to write 1: Cancel; no effect: Cancel; no effect:

We say the currents or fields are coincident if they reinforce, and anti-
coincident if they cancel.

Now consider two cores arranged as below. We still have two driveWe can use those two
states. lines, but we have turned one of the drive lines through two right angles

so that it passes through both cores but in opposite directions. If we
now consider the four possible simultaneous states of the drive lines,
we find that all possible combinations are put to use:

Write 0 to left core: Write 1 to left core: Write 0 to right core: Write 1 to right core:
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To take the concrete example of the small core array we built, we One sense loop snakes
through all cores.show a 8 × 4 array. We also now illustrate the single sense line which

runs through all cores. The alternating alignment of the cores makes
the threading of the sense loop easier, and also reduces the transformer-
action spikes.

Sense loop

Drive lines

The array of cores can be thought of as two halves, with each core in
the left half having an anti-coincident partner in the right half sharing
the same pair of drive lines.

3 Our implementation

To implement these principles, we have to solve a few fairly distinct
problems. We must be able to drive current through the drive lines;
decide which drive lines need to have current driven through them; and
sense when an induced ‘switching signal’ occurs.

3.1 A current-driving circuit

As noted above, we organise the 32-bit module as a rectangular array The drive circuit is two
copies (X and Y ) of one
problem: driving one of
four lines in either
direction.

with 4 rows and 8 columns in which the columns are paired as above
using anti-coincidence. As a result, we have 4 vertical and 4 horizontal
drive lines to control. Our current-driving problem is thus two instances
of the same problem: we need to be able to select one of four lines, and
to specify a direction in which to drive current along that line.

Our current sources and sinks are transistors, and we could ac- Drive the four lines as ‘two
by two’.complish our goal by connecting each end of each drive line to the

collectors of both a PNP and an NPN transistor (i.e., by using four
H-bridge circuits). This would work, but would be inefficient in terms
of the number of transistors used. By introducing a few diodes, we can
use a design with half as many transistors.

By turning on the correct transistors in the following circuit, we
can send current in either direction through any of the drive lines. The
resistors R1 and R2 control how much current flows. We discuss their
value below.
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X00

X01

X10

X11

GND

GND

GND

GND

VCC

VCC

VCC

VCC

R1

R2

QP
11

QP
20

QP
21

QP
10

QN
10

QN
11

QN
20

QN
21

Calibrating the half-select current

As we have already discussed, it is important that we drive the rightExperiments determine
how much current we

should use.
amount of current. It must be low enough that the magnetic field
produced by the current in one drive line is not enough to switch a
core, but high enough that the combined field from two coincident
currents does produce switching. We determined the range of possible
values of current for our cores empirically and established that any
value in the range 250–340 mA works. We set the current by choosing
appropriate values for the resistors in the drive circuit above.

3.2 Addressing

In the circuit above, we want to know which transistors to turn onWhich transistors should
we turn on? to drive current left or right in one of the four lines. We must be

able to pulse this current, and so we need to be able to stop all drive
currents. Let the enable Boolean variable be E. Let the variable DX

give the direction, with DX = 0 being leftwards. In order to drive the
line XA1A2 in the direction DX (as long as E is asserted), the base of
transistor QP

11, for example, must be taken high or low according to
QP

11 = E ∧DX ∧A1· In words, QP
11 must be on (i.e., its base must be

pulled low) exactly when we are enabled (E = 1) and we wish to drive
current rightwards (DX = 1) through either X10 or X11 (those two
lines have A1 = 1). The formulae for all eight transistors are:

QP
10 = E ∧DX ∧A1 QP

20 = E ∧DX ∧A2

QN
10 = E ∧DX ∧A1 QN

20 = E ∧DX ∧A2

QP
11 = E ∧DX ∧A1 QP

21 = E ∧DX ∧A2

QN
11 = E ∧DX ∧A1 QN

21 = E ∧DX ∧A2
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Combining the X and Y drive addressing

Recall that the current-driving circuitry consists of two instances of this Translating from ‘currents
in lines’ to ‘address and
data’.

driving circuit, horizontal and vertical. We thus have bits A1, A2, and
DX for the first instance and A3, A4, and DY , say, for the second. We
can generate a switching field in either direction for any of our 32 cores
by choosing values for these six bits, and then controlling transistor
bases accordingly. Furthermore, looking back at section 2.6, we see that
the tuple (A1, A2, A3, A4) determines a pair of anti-coincident partner
cores and that it is the value of A0 := DX ⊕ DY that distinguishes
between these two partner cores. Therefore we reparameterise our six
control bits in terms of the five-bit address A4A3A2A1A0 and the single
data bit D := DX . We then have DY = DX⊕A0. The 32 cores are now
numbered, since each core has a unique five-bit address A4A3A2A1A0.
The layout of these addresses in the 8 × 4 array may appear a little
haphazard, but this does not matter.

3.3 Sensing

With the current-driving and addressing circuitry in place, it remains How to detect the bulging
switching signal?only to describe how to detect the presence or absence of a core-

switching signal on the sense line. We chose the comparator-based
circuit described in [1] (and apparently of unknown German origin):

OUT

SA

SB

GNDGND

VCC VCC

3
.3

k
2
0

1
.6

k

3
.3

k
2
0

1
.6

k

The sense line, described above, is threaded once through each of the
32 cores, and its ends are connected to the lines marked SA and SB.

The obvious two-fold symmetry of this circuit reflects the possibility Need to detect positive
and negative sense bulges.that a sense pulse from a switching core can bias SA positively or

negatively relative to SB depending on whether a core is switching
from a clockwise to an anti-clockwise magnetisation state relative to
the sense line or vice-versa.

The resistors ensure that, when no voltage is present across SA/SB, With an input of at least
±20 mV, one comparator’s
output goes high.

each comparator’s inverting input is 20 mV above its non-inverting, and
so both outputs are low. If a positive sense pulse occurs, causing SA
to rise more than 20 mV above SB, the left comparator will detect
this and output ‘high’. Conversely for a negative sense pulse, the right
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comparator will fire. We or the two to detect pulses of either polarity.
The threshold of 20 mV was chosen by experiment.

The final detail of the sense circuitry is that we used a timed latch toCapture sense output at
the right moment.

t=0 t=650ns:
latch sense output

t=2us

sense 
threshold

catch and store the output of the or gate at the appropriate moment.
This ensures that we are not affected by any high comparator outputs
caused by the transformer-action spikes. The timer delay was chosen
by experiment as 650 ns, although any value 500–900 ns worked.

4 Finished product

4.1 Complete circuit

Combining these pieces, we arrive at the final circuit, which we give
in appendix A. The design splits the shield into a driver board and
a plug-in core board, as shown in this photograph of the two boards
plugged into the Arduino:

4.2 Fabrication

We finally achieved our goal of building a core memory shield by havingOur design files are
available. our schematics fabricated as PCBs. Owing to some late design changes,

we then had to patch the boards slightly; the circuits described here in-
clude the changes. Eagle files for these schematics and PCBs as well as
the Gerber files are available in the online version of this document [6].
Also contained in the Eagle files are the part numbers for the various
components (transistors, logic gates, comparators, etc.) that we used.

4.3 API and testing

Once the core board, driver board and Arduino have been appropriatelyHow to write to and read
from the cores from

Arduino code.
mated, it is easy to use the Arduino to read from and write to the core
memory array. To send a write pulse to a core, the Arduino writes the
data bit to digital pin 8, writes the address of the core in question to
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digital pins 3–7 and then asserts enable (digital pin 2) for 2µs. Once
this is done, reading digital pin 9 reveals whether the core changed
state. Cycle time is such that a 32-bit operation takes 0·5 ms, although
preliminary experiments suggest that by being more aggressive on the
timings we could bring this down to 0·3 ms.

These operations are presented as the functions write_bit and A simple API and
serial-based CLI is
available.

read_bit. Loops turn these into write_word and read_word, to act
on the whole core board as a single 32-bit unsigned integer. A further
natural operation is a bit exchange. This, in one operation, writes a new
data bit to a core, and returns the old value, which can be deduced as
(latched-sense-output) xor (new-data). The source-code for this API,
with a command-line interface presented on the serial port, is available
for download [6].

We used this interface to extensively test the core memory shield. The core memory shield
performed error-free for
10 bln operations, running
for 100 hrs.

After running continuously for over one hundred hours, the shield had
performed over ten billion successful bit-exchange operations without
a single error.

5 Final words

We hope that our work here might encourage others to take an inter-
est in both the theory and the practice of core memory. For further
reading, excellent descriptions are given by Hilpert [1] and by Jones [4].

Building a reliable 32-bit core memory shield for the Arduino proved
to be a natural stopping point for our work, but there is certainly more
that could be done. Some ideas for future work that appealed to us:

• Many core memory arrays from the heyday of core memory still
exist and indeed are easy to find for sale (e.g., on eBay). It might
be a fun challenge to build a driver module to write to and read
from these old arrays. Perhaps with care and luck one could even
recover some 50-year-old data?

• A completely different approach to core memory, with a non-
destructive read cycle, was invented by Eiichi Goto in the mid-
1950s, and was incorporated in the Japanese Parametron Com-
puter 1 (see [7] for a description). It would be very interesting to
re-implement this significantly different core memory technology.

• In practice, a group of core memory modules of the type described
here, known as planes, were combined into a core store. All
planes could be accessed simultaneously by introducing an inhibit
line [4]. Constructing an 8-bit wide store would be a worthwhile
challenge.
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A Circuits

Firstly, the schematic for the driver board:
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Secondly, the core board’s schematic:

DRIVE R BOARDS E NS E

The terminating resistor across the sense loop provides a path for the
current caused by the induced voltage round the loop.
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