Difference between revisions of "User:Ninavdbroek/THINK LIKE A MOUNTAIN"

From DigitalCraft_Wiki
Jump to navigation Jump to search
Line 255: Line 255:
 
-solar energy potential  
 
-solar energy potential  
  
 +
 +
Different people with different backgrounds, try to design their optimal landscape. Forming a database of possibilities.
 +
Explore and demonstrate spatial impacts of landscape change.
 +
 +
 +
 +
 +
BRENDAN HARMON
 +
brendan.harmon@gmail.com
 +
 +
RESEARCH
 +
 +
My research explores the role of creativity in traditional and digital design processes for landscape architects. With computer modeling and visualization we are better able to understand and represent landscape dynamics. However, interacting with computers can be very unintuitive and can inhibit or transform creativity. I am exploring whether advances in digital design, tangible user interfaces, and computer-aided manufacturing can enable a more intuitive design process that tightly couples creativity and rigorous analysis.  Please explore my projects.
 +
 +
 +
RESEARCH INTERESTS
 +
 +
Landscape dynamics, geospatial modeling, tangible user interfaces, human-computer interaction, algorithmic landscape architecture, parametric urban modeling, generative design, geovisualization, & scientific rapid prototyping.
  
  

Revision as of 22:56, 8 May 2015

THINK LIKE A MOUNTAIN

Thinking like a mountain is a term coined by Aldo Leopold in his book A Sand County Almanac.[1] In the section entitled "Sketches Here and There" Leopold discusses the thought process as a holistic view on where one stands in the entire ecosystem.[2] To think like a mountain means to have a complete appreciation for the profound interconnectedness of the elements in the ecosystems.[3] It is an ecological exercise using the intricate web of the natural environment rather than thinking as an isolated individual.


PAPER http://www.colorado.edu/geolsci/faculty/molnarpdf/1990IJES.BrainsSizesMountainUpl.pdf

THE RISE OF MOUNTAINS RANGES AND THE EVOLUTION OF HUMANS: A CAUSAL RELATION?

'It is a bold claim to make of mountains, that they contributed a third dimension of height and depth, to humans intelligence.' George Winthrop Young. 1957 Apparently, the rise of mountains challenged.




MOUNTAIN POPULATIONS OFFER CLUES TO HUMAN EVOLUTION


In the hearts of evolutionary biologists, mountains occupy a special place. It’s not just their physical majesty: mountains also have an unmatched power to drive human evolution. Starting tens of thousands of years ago, people moved to high altitudes, and there they experienced natural selection that has reworked their biology.

“This is the most extreme example in humans that you can find,” said Rasmus Nielsen, an evolutionary biologist at the University of California at Berkeley.

Humans have adapted to mountainous environments just as Charles Darwin predicted. To discover how this occurred, scientists are now examining the DNA of people who scaled mountains in different parts of the world.

“There’s this beautiful experiment in natural selection going on,” says Anna Di Rienzo, a professor of human genetics at the University of Chicago. “You can really ask questions central to evolutionary biology.”

When people from low elevations climb to higher ones, they start struggling for oxygen. At 12,000 feet, each breath delivers only 60 percent of the oxygen that the same breath would at sea level. Even a slow walk can be exhausting, because the body can get so little fuel.

In the face of this stress, people respond in several ways. They produce more hemoglobin, the molecule that ferries oxygen from the lungs. Their resting heart rate increases, as does their breath rate. These adjustments help raise the amount of oxygen in the blood, but it never regains its former level. Extra hemoglobin is not a good long-term solution to life at high altitudes, because it can lead to blood clots. Women moving from low altitudes to high ones also have more trouble delivering oxygen to their babies during pregnancy. Studies have shown that the rate of low-birth-weight babies is twice as high at 6,000 feet as it is at sea level. Life in the mountains is easier for people whose ancestors have lived there for millenniums. They don’t suffer from altitude sickness. Women from high-altitude populations give birth to normal-size babies.

Scientists visiting some of those populations have discovered a number of biological adaptations in the inhabitants’ bodies. In Tibet, for example, people have broader arteries and capillaries. In the Andes, they can dissolve more oxygen into their blood.


Evolutionary biologists reasoned that natural selection produced these adaptations as each population settled at a high elevation. People with mutations that let them withstand low oxygen levels would be more likely to survive and have healthy children. Several teams of scientists have traveled to the mountains to gather DNA samples from people and search for traces of that evolution.

In 2010, Dr. Nielsen and his colleagues found variants of certain genes that were much more common in Tibetans than in the Han, the major ethnic group in China, who have lived for thousands of years at lower altitudes. By a wide margin, the winner was a gene called EPAS1. People with different variants turned out to have different levels of hemoglobin, suggesting that the gene was important to adapting to life at high altitudes.

Recently, Dr. Nielsen and another group of colleagues published a study on people who live in the highlands of Ethiopia. They found no evidence that EPAS1 had evolved there as it did in Tibet. Instead, a different gene, BHLHE41, appeared to have experienced natural selection.

Two other teams of scientists have recently searched for high-altitude genes in Ethiopians, and neither put BHLHE41 on their list. It’s possible that Dr. Nielsen’s method is more sensitive than the others, but that remains to be proved. “It’s going to take a while to sort through the discrepancies in Ethiopia,” said Dr. Di Rienzo, a co-author of one of the other studies.

It will be intriguing to see that unfold. BHLHE41 and EPAS1 turn out to have something in common: they work together in a network of genes that lets us cope with low oxygen levels. Even at sea level, low oxygen can threaten our bodies from time to time. Exercise can strip it from our muscles, while inflammation can eliminate it from wounds. The oxygen-sensing pathway triggers defenses to protect our bodies from damage.

Dr. Nielsen’s study suggests that evolution has stumbled across a way to retool this pathway to help people live at high altitudes. But it turns out there’s more than one way to retool a pathway. Though evolution has some creative freedom, it seems to stick to a few themes.






http://www.designboom.com/architecture/artificial-mountain-design/

as seen above, guallart looks to incorporating geological forms into the infrastructure of the city in which he is working. in this case, the focus is on the city of barcelona. before our artificial world of civilization, we were surrounded by virgin land of natural plains and mountains. for example, in san cugat, spain they devour and reform corporative centres, creating new mountain-buildings which are capable of being auto-sufficient. this extension of the landscape has resulted in a public golf court over one of the main highways, it also means more land. in tarragona, spain the mountains detect chemical agents which block the possibility of living on the coasts, isolating and moving towards the interior of the land, unfolding new topographies to organize a new city. guallart’s project ‘the re-naturalisation of territory’ looks at mountains and their way of extending natural continuity within landforms, creating a set of islands in front of the city of barcelona resulting in more land.

vicente guallart


http://www.designboom.com/art/cells-of-life-by-charles-jencks-at-jupiter-artland/






PROOFFLAB MAGAZINE

A new professional magazine that aims to define the future working culture. Every month a visionair is invited to share his or her view on the new working landscape through an essay in text and images. Curated by Studio Makkink & Bey.





GOOGLE EARTH PRO

Dat we via google earth kunnen zien hoe onze wereld er op andere plekken uitziet, maakt dat dan ook echt de waarheid?






THE LIVING MOUNTAIN- Nan Shepherd


The Cairngorms of north-east Scotland are the mountains I know best and have known longest. I have crossed the range often on foot and ski, and my maps are spidery with the ink-tracks of routes followed and summits attempted. I have seen dozens of blue-white snow hares, big as dogs, sheltering on the lee slopes of Glas Maol, and I have followed flocks of snow buntings as they created a blizzard over the high plateau. Yes, I thought I knew the Cairngorms well – until a decade or so ago when I read The Living Mountain, Nan Shepherd's brief masterpiece about the region, written in the early 1940s but not published until 1977, four years before her death. Her prose – born of a lifetime's acquaintance with the massif – remade my vision of these familiar hills.

In August 2008, I wrote an article for Review in praise of The Living Mountain. At that time the book was almost out of print, but in course of my piece I hoped that "given the current surge of interest in writing about nature and place", Shepherd "might … find a new generation of readers". That hope has been realised. In 2011, Canongate republished The Living Mountain as one of the 12 founding classics of its "Canons" series, alongside books such as Knut Hamsun's Hunger and Alasdair Gray's Lanark. The Living Mountain became the surprise hit of the dozen. It has since sold 12,000 copies, and among its new admirers are Jeanette Winterson, Richard Mabey and Nicholas Lezard. Those who have valued Shepherd's work for longer include Janice Galloway, Kathleen Jamie and Ali Smith. Next spring, the Cambridge-based Galileo Publishing will put out a new edition of Shepherd's only volume of poems, In the Cairngorms, which was first published 80 years ago in a tiny print run, and has since been almost impossible to find.

In late September, I travelled to the Cairngorms to make a BBC Radio 4 programme exploring both Shepherd's prose and her landscapes. Three of us set off into the mountains. With me were Kirk Watson, a film-maker and climber from Aberdeen, and Victoria McArthur, the programme's producer. My wish was to spend days and nights in the hills without fixed purpose. Too often I had been hurried across them by weather and logistics, unable to linger and pry. Shepherd called herself "a peerer into nooks and crannies", and I took this as my mandate for aimless wandering. "Often the mountain gives itself most completely when I have no destination," she wrote, "but have gone out merely to be with the mountain as one visits a friend, with no intention but to be with him."

We walked in from the north, through the dwarf pines of the Rothiemurchus forest, under a blue sky and a daytime moon, and into the Lairig Ghru – the great glacial valley that cleaves the range into east-west halves. It was hot work for late autumn. The sun was slant but bright. Mares'-tail clouds furled at 30,000 feet (9km). A mile into the Ghru, I saw a golden eagle catch a thermal near Lurcher's Crag, "rising coil over coil in slow symmetry", as Shepherd put it. It was only the second eagle I had ever seen in the Cairngorms and it set my heart clattering.

Up the long shoulder of Sron na Lairige we toiled, over the tops of Braeriach and, at last, on to the plateau proper: a vast upland of tundra and boulder at an altitude of 4,000 feet. I heard a barking and saw to my north-east a flight of a hundred or so geese arrowing through the Lairig Ghru. Because I had height, I looked down on to their flexing backs rather than up at their steady bellies as they passed.

Advertisement

We made camp far across the plateau, near to the source of the River Dee – the highest origin of any British river. I pitched my tent by a stream, looking south-east over the Lairig Ghru towards the battleship flanks of Càrn a' Mhàim. Butterflies danced. There were no midges. I had some real coffee with me for the morning brew. It was, undoubtedly, the best B&B in the country.

Late that afternoon we dropped 600 feet north off the plateau in search of Loch Coire an Lochain, the "loch of the corrie of the loch", which Shepherd prized as one of the range's "recesses", or hidden places. She had also visited it on a late-September day, and marvelled at the chilly clarity of its water, and its secrecy as a site. "It cannot be seen until one stands almost on its lip," she wrote, "the inaccessibility of this loch is part of its power. Silence belongs to it." At the hour we reached it, a curved shadow had fallen across the corrie which, when doubled by the the surface of the water, perfectly mimicked the form of a raven's beak. We swam in the loch, which was steel-blue in colour and speckled with millions of golden pollen grains. The water was gin-clear and bitingly cold.

Sunset was close as we climbed back up to the plateau, so we waited for it on a westerly slope. As the sun lowered and reddened, cloud-wisps blew up from the valley and refracted its light to form a dazzling parhelion: concentric halos of orange, green and pink that circled the sun. Once the sun had gone, a pale mist sprang up from the plateau, and we waded knee-deep in its milk back to camp, from where we watched a yellow moon-rise above the Braeriach tors.

The air was so mild that a tent was unnecessary. I slept out; woke soaked in dew and shrouded in cloud. We were in a white world. Visibility was 20 yards at most. Robbed of sight, for a full hour I sat and listened to the mountain. Ptarmigans zithered and churred to one another, dotterels kewed, and water moved: chuckled, burred, glugged, shattered. "The sound of all this moving water is as integral to the mountain as pollen to the flower," Shepherd reflected beautifully. "One hears it without listening as one breathes without thinking. But to a listening ear the sound disintegrates into many different notes – the slow slap of a loch, the high clear trill of a rivulet, the roar of spate. On one short stretch of burn the ear may distinguish a dozen different notes at once."

That morning we searched in the mist for the Wells of Dee, the springs that mark the river's true birthplace. We began at the plateau rim where the Dee crashes 1,000 feet into Garbh Choire, and from there we followed it back uphill, always taking the larger branch where the stream forked. At last we reached a point where the water rose from within the rock itself. Shepherd had also made this "journey to the source", and confronted matter in its purest form: "Water, that strong white stuff, one of the four elemental mysteries, can here be seen at its origins. Like all profound mysteries, it is so simple that it frightens me. It wells from the rock, and flows away. For unnumbered years it has welled from the rock, and flowed away. It does nothing, absolutely nothing, but be itself."

This proof of the mountain's mindlessness was, to Shepherd, both exhilarating and terrifying. The Cairngorms exceeded human comprehension: what she called the "total mountain" could never totally be known. Yet if approached without expectation, the massif offered remarkable glimpses into its "being". "The mind cannot carry away all that [the mountain] has to give," she wrote near the end of her book, "nor does it always believe possible what it has carried away." THE CAIRNGORMS OVERSCHRIJVEN HET MENSELIJK BEGRIP

Walking under Shepherd's influence, we had enjoyed an astonishing time of gifts. The eagle, the geese, the blue‑gold loch, the parhelion, the mists, the springs … Our few days in the hills had a year's worth of marvels compressed into them – and each with its precedent in The Living Mountain. The fortuity of it all was vast, approaching the eerie. It was if we had walked into the pages of Nan's book – though, of course, her book had emerged out of the Cairngorms themselves, so we were merely completing that circuit of word and world.







It is not a silly thing at all to enjoy a stone in a tray. I see the whole world in a tiny stone. Some objects in this world are huge, and others are small, and they come in all shapes, but they are not that different when you look at their essence.[4]






Geological Erosion Definition Explained

Erosion DefinitionGetty Images

Erosion is defined as the processes that break down surfaces of the earth and carry away sediments. The field of geology often examines the natural sources of erosion. While most sources of erosion are natural, it is human actions that enhance its effects on the environment. This is a source of concern to those with careers in geology or geology education. Sources of Erosion Wind, moving water, gravity, and glacial ice are often the elements most responsible for erosion. They aid to carry earth and soil from one place to another, usually very close to the earth's surface. There is also coastal erosion, which is caused by waves produced in the ocean. These methods of erosion are called mechanical erosion. Sedimentary rocks, valleys, and ravines are products of such erosion. Erosion has long been part of the natural order of things in nature, but there is one major difference between what happened in the past and what is happening now. In the past, erosion was controlled as nature found a way to replenish and only let go of minimum quantities of earth. However, at present, much more is taken away by erosion than can be replenished by nature, and we are not replacing what erosion takes away from nature. Effects of Erosion With the increase in construction, urbanization, and deforestation, it is no surprise that erosion is causing a huge imbalance in the earth's natural environment. Excessive erosion can cause land degradation, increasing desert landscape, and loss of nutrient rich layers of soil. Erosion of the topsoil of the earth can cause the composition of soil to change. This, in turn, has a major impact on what we can grow for food and how much of it we can grow. Reductions in crop yields can also have short and long term economic effects such as increases in the cost of food. In addition, erosion caused by wind can also have a detrimental impact on health by introducing elements into the atmosphere that can accumulate in lungs and cause respiratory disorders. The introduction of soil elements into water sources can also affect water use and quality. In addition to impact on humans, erosion can also have major consequences on wildlife. Erosion can eliminate a lot of wildlife habitats that can dislocate animals and reduce their numbers drastically. Added soil particles in water can also affect life in water, preventing the growth of algae and other water animals. Factors that Affect Erosion There are some factors that affect how much erosion takes place. The amount and quality of precipitation affects erosion. The heavier the rainfall and greater the velocity of the rain, the more erosion occurs. High wind speeds can also increase the amount of erosion. Soil that has large amounts of clay is more likely to stand up to erosion as it holds together more than other kinds of soil. The topography of the land also makes a difference in erosion rates. The steeper the topography is, the more likely erosion is to occur. The amount of plant coverage on any landscape makes a huge impact on the amount of erosion. The more plant coverage there is, the lower the rate of erosion. Fighting Erosion Since humans are a major element responsible for unprecedented increases in erosion, it goes without saying that we could possibly control the effects of erosion with our actions as well. Increasing green coverage can decrease erosion considerably. Even simple things like grass coverage or ornamental grass can go a long way in reducing and preventing soil erosion. Covering areas with green plants is especially important in inclined areas that particularly need protection from erosion. If you cannot do anything with bare land, at least cover it with mulch that prevents soil erosion. In addition, adopting organic farming practices like crop rotation and reducing the amount of chemical treatment of soil can significantly decrease unwanted erosion. Also ensure that water from rain and snow melt has adequate drainage. In doing this, you minimize the amount of free running water there is on land to wash away soil. Around You There is a way every individual can contribute to reducing erosion. Consider planting trees for special occasions like weddings and births. In addition, keep the land around you from getting eroded by planting trees or growing shrubs. These can act as windbreakers in the area, preventing erosion. Yes, erosion is a natural process, but human activity has pushed this natural process to unnaturally high limits. This is increasing the negative effects erosion has on the planet in terms of soil and air quality. But we can turn this trend around by doing simple things where we live. Spread the word and help set the world on the way to less erosion and less impact.





Terrace farming is a type of farming that was developed in various places round the world. The Rice Terraces of the Philippine Cordilleras (hills and mountains) is a World Heritage Site. It dates back two thousand years.[1]

This method of farming uses "steps" that are built into the side of a mountain or hill. On each level, various crops are planted. When it rains, instead of washing away all of the nutrients in the soil, the nutrients are carried down to the next level. Additionally, these steps prevent a free flowing avalanche of water that would take plants with it and destroy the all of the crops on the hillside. This system also allowed them to build aqueducts, which carried water to each level.

The idea was also independently developed by the Inca people. The Incas built their aqueduct system so well that it is still used today. Terrace farming is often used in Asia on rice farms









https://plus.google.com/112857255995703553144/about

https://www.youtube.com/channel/UCc37pVh-WE46Xkqeq-KZQsA



TANGIBLE LANDSCHAPE Tangible user interfaces couple creativity and rigorous analysis.

TanGeoMS Kinect Scanner Projector Physical 3d model (Sand with polymer) GRASS GIS Open source = 3d sketching tool

You can see the side effects on screen. Disjunction between virtual and physical Sculpting a physical model, 3d scanning, into a GIS projecting back on to the model.

Creating different change scenarios- real time updating. First trying to create the existent surface, then design intuitively a new future concept. 3 dimensional shaping of the land. For example simulate the waterflow on it or the sea level rise. It's generative design, form generation, reconceptualization. Conceptual design with very scientific and rigorous analysis from the beginning of the process.



Helena Mitasova shows the combination of a real-world digital elevation model with a flexible, laboratory-scale 3D model, indoor laser scanner, and projectors into a tangible geospatial modeling system.


See what the consequences are of changing the topography of the landscape Generate very quickly many different scenarios

Modify landscape by hand -add buildings, ponds, dams, roads -change land surface properties

Compute and project -elevation or volume change -slope and aspect -views, line of sight -flow accumulation -soil erosion and deposition -solar energy potential


Different people with different backgrounds, try to design their optimal landscape. Forming a database of possibilities. Explore and demonstrate spatial impacts of landscape change.



BRENDAN HARMON brendan.harmon@gmail.com

RESEARCH

My research explores the role of creativity in traditional and digital design processes for landscape architects. With computer modeling and visualization we are better able to understand and represent landscape dynamics. However, interacting with computers can be very unintuitive and can inhibit or transform creativity. I am exploring whether advances in digital design, tangible user interfaces, and computer-aided manufacturing can enable a more intuitive design process that tightly couples creativity and rigorous analysis. Please explore my projects.


RESEARCH INTERESTS

Landscape dynamics, geospatial modeling, tangible user interfaces, human-computer interaction, algorithmic landscape architecture, parametric urban modeling, generative design, geovisualization, & scientific rapid prototyping.


LINKS

Hand as direct tool Showing the impact of human on their environment. Literally. Using technique for natures good. Questioning the malleability of humans. Seeing us as creators. Impact on climate change. Using live data from google earth Side effects of deforestation and so on. Invest how you can visualize as an artist your research, cause more often projects are based on information. I'm trying to find new ways to transmit my thoughts and visions. I also use technology for natures advance and recovery instead of damaging it.