Difference between revisions of "ATMOSPHERIC"
Ninavdbroek (talk | contribs) |
Ninavdbroek (talk | contribs) |
||
Line 11: | Line 11: | ||
What we measure as the temperature is always related to the average speed of the molecules in a system. So in a cold object the molecules move slowly and in a hot object the molecules move faster. And when two objects are in contact, thermal equilibrium is reached when all the molecules of both objects have the same average molecular motion. Which means the same speed. Warmte ontstaat dus door het bewegen van moleculen, bij 0 graden staan alle moleculen dan ook helemaal stil. Dit verklaart het vriezen van water. (Wanneer moleculen stil staan, staat de tijd dan ook stil?) Many methods have been developed for measuring temperature. Most of these rely on measuring some physical property of a working material that varies with temperature. One of the most common devices for measuring temperature is the glass thermometer. This consists of a glass tube filled with mercury or some other liquid, which acts as the working fluid. Temperature increase causes the fluid to expand, so the temperature can be determined by measuring the volume of the fluid. | What we measure as the temperature is always related to the average speed of the molecules in a system. So in a cold object the molecules move slowly and in a hot object the molecules move faster. And when two objects are in contact, thermal equilibrium is reached when all the molecules of both objects have the same average molecular motion. Which means the same speed. Warmte ontstaat dus door het bewegen van moleculen, bij 0 graden staan alle moleculen dan ook helemaal stil. Dit verklaart het vriezen van water. (Wanneer moleculen stil staan, staat de tijd dan ook stil?) Many methods have been developed for measuring temperature. Most of these rely on measuring some physical property of a working material that varies with temperature. One of the most common devices for measuring temperature is the glass thermometer. This consists of a glass tube filled with mercury or some other liquid, which acts as the working fluid. Temperature increase causes the fluid to expand, so the temperature can be determined by measuring the volume of the fluid. | ||
− | What is a temperature sensor? | + | '''What is a temperature sensor?''' |
An analog temperature sensor is pretty easy to explain, it's a chip that tells you what the ambient temperature is! | An analog temperature sensor is pretty easy to explain, it's a chip that tells you what the ambient temperature is! |
Revision as of 13:44, 3 November 2014
ATMOSPHERIC De lucht om ons heen tot 15 km. Waar ook het weer zich afspeelt.
1. Humidity - Lucht vochtigheid
2. Pressure - meet de druk van glas en vloeistof
3. Temprature - meet temperatuur
What we measure as the temperature is always related to the average speed of the molecules in a system. So in a cold object the molecules move slowly and in a hot object the molecules move faster. And when two objects are in contact, thermal equilibrium is reached when all the molecules of both objects have the same average molecular motion. Which means the same speed. Warmte ontstaat dus door het bewegen van moleculen, bij 0 graden staan alle moleculen dan ook helemaal stil. Dit verklaart het vriezen van water. (Wanneer moleculen stil staan, staat de tijd dan ook stil?) Many methods have been developed for measuring temperature. Most of these rely on measuring some physical property of a working material that varies with temperature. One of the most common devices for measuring temperature is the glass thermometer. This consists of a glass tube filled with mercury or some other liquid, which acts as the working fluid. Temperature increase causes the fluid to expand, so the temperature can be determined by measuring the volume of the fluid.
What is a temperature sensor?
An analog temperature sensor is pretty easy to explain, it's a chip that tells you what the ambient temperature is!
These sensors use a solid-state technique to determine the temperature. That is to say, they don't use mercury (like old thermometers), bimetallic strips (like in some home thermometers or stoves), nor do they use thermistors (temperature sensitive resistors). Instead, they use the fact as temperature increases, the voltage across a diode increases at a known rate. (Technically, this is actually the voltage drop between the base and emitter - the Vbe - of a transistor. By precisely amplifying the voltage change, it is easy to generate an analog signal that is directly proportional to temperature. There have been some improvements on the technique but, essentially that is how temperature is measured.
Because these sensors have no moving parts, they are precise, never wear out, don't need calibration, work under many environmental conditions, and are consistent between sensors and readings. Moreover they are very inexpensive and quite easy to use.
american artist john grade‘s ‘capacitor’ is a kinetic sculptural installation that moves in response to weather data collected from the roof of its home at john michael kohler arts center, wisconsin. the artwork — whose coil configuration is influenced by organic and geometric forms found in nature — physically behaves according to accumulated statistics from a mechanized controller, amassing both current outdoor conditions and weather patterns from the past one hundred years. sending the information about change in wind intensity and temperature directly to the sculpture, the interactive art piece moves and changes in luminosity. ‘the whole of the sculpture will appear to be very slowly breathing’, describes john grade. one hundred separate structural components, which make up ‘capacitor’, change in light level, illuminating and dimming when there is a fluctuation in temperature. shifts in the wind are marked by motion as the massive spiral compresses and releases.
4. Light - detecteert schaduw & licht
For Example
3. radar/weeronline/weerballon
4. fotodecterder/lichtsensor
2. kwik
wat meet het wind . temp . dichtheid . druk. omgevingslicht