From DigitalCraft_Wiki
Jump to navigation Jump to search


Written Assignment

[Download PDF Here] (Better Quality!)

Research Paper.jpg Research Paper2.jpg Research Paper3.jpg Research Paper4.jpg Research Paper5.jpg Research Paper6.jpg Research Paper7.jpg Research Paper8.jpg Research Paper9.jpg Research Paper10.jpg Research Paper11.jpg Research Paper12.jpg Research Paper13.jpg Research Paper14.jpg Research Paper15.jpg Research Paper16.jpg Research Paper17.jpg Research Paper18.jpg




the emission of energy as electromagnetic waves or as moving subatomic particles, especially high-energy particles which cause ionization.
divergence out from a central point, in particular evolution from an ancestral animal or plant group into a variety of new forms.
"evolution is a process of radiation not progression"


Auto thermo.gif

Thermal radiation is electromagnetic radiation generated by the thermal motion of charged particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. When the temperature of a body is greater than absolute zero, inter-atomic collisions cause the kinetic energy of the atoms or molecules to change. This results in charge-acceleration and/or dipole oscillation which produces electromagnetic radiation, and the wide spectrum of radiation reflects the wide spectrum of energies and accelerations that occur even at a single temperature.

Examples of thermal radiation include the visible light and infrared light emitted by an incandescent light bulb, the infrared radiation emitted by animals and detectable with an infrared camera, and the cosmic microwave background radiation. Thermal radiation is different from thermal convection and thermal conduction—a person near a raging bonfire feels radiant heating from the fire, even if the surrounding air is very cold.

Sunlight is part of thermal radiation generated by the hot plasma of the Sun. The Earth also emits thermal radiation, but at a much lower intensity and different spectral distribution (infrared rather than visible) because it is cooler. The Earth's absorption of solar radiation, followed by its outgoing thermal radiation are the two most important processes that determine the temperature and climate of the Earth.

Thermal radiation is one of the fundamental mechanisms of heat transfer.

Forms of electromagnetic radiation like radio waves, light waves or infrared (heat) waves make characteristic patterns as they travel through space. Each wave has a certain shape and length. The distance between peaks (high points) is called wavelength.




Infrared radiation is popularly known as "heat radiation"[citation needed], but light and electromagnetic waves of any frequency will heat surfaces that absorb them. Infrared light from the Sun accounts for 49%[20] of the heating of Earth, with the rest being caused by visible light that is absorbed then re-radiated at longer wavelengths. Visible light or ultraviolet-emitting lasers can char paper and incandescently hot objects emit visible radiation. Objects at room temperature will emit radiation concentrated mostly in the 8 to 25 µm band, but this is not distinct from the emission of visible light by incandescent objects and ultraviolet by even hotter objects (see black body and Wien's displacement law).

IR Advantages: Low power requirements: therefore ideal for laptops, telephones, personal digital assistants Low circuitry costs: $2-$5 for the entire coding/decoding circuitry Simple circuitry: no special or proprietary hardware is required, can be incorporated into the integrated circuit of a product Higher security: directionality of the beam helps ensure that data isn't leaked or spilled to nearby devices as it's transmitted Portable Few international regulatory constraints: IrDA (Infrared Data Association) functional devices will ideally be usable by international travelers, no matter where they may be High noise immunity: not as likely to have interference from signals from other devices

IR Disadvantages: Line of sight: transmitters and receivers must be almost directly aligned (i.e. able to see each other) to communicate Blocked by common materials: people, walls, plants, etc. can block transmission Short range: performance drops off with longer distances Light, weather sensitive: direct sunlight, rain, fog, dust, pollution can affect transmission Speed: data rate transmission is lower than typical wired transmission

Statement: Just because we don't see it doesn't mean it doesn't exist. Our definition of seeing is incomplete.


INFR Lars1.jpg INFR Lars2.jpg INFR Lars3.jpg

INFRA Pres1.jpg INFRA Pres2.jpg INFRA Pres3.jpg

INFRA Pres4.jpg INFRA Pres5.jpg





Heat radiation becomes a bigger aspect of our lives. Biotopes across the world melt while others dry out. All of this is happening because humans are breaking down the protective shield around the earth, making the effects of heat radiation even worse. By using heat radiation as a tool I want to tell a story about this topic that is currently happening to our earth. By using a fragile medium like wax and encasing a story into it.

Some of his inspiration came from photos taken during an expedition to the Canada off of the Coast of Labrador in 1864, but the rarely seen photographs weren’t taken by Bradford. J.W Black sent along photographers to help document Bradford's trip, and these specific images were taken by William H. Pierce.

Down below are my first tests with this.

First layer.jpg

2016-12-03 16.34.20.jpg

Played with wax, where heat radiation was a tool to melt and sculpt with the material. They often turn out to be layers. Still experimenting.

What do I want like doing: - Tell a Story. - Connect it to nature

Concept: Telling a story with radiation as a tool. That radiation is heat aka thermal radiation, and shapes the story.

wax is fragile medium.